137 research outputs found

    Moduli Spaces of Abelian Differentials: The Principal Boundary, Counting Problems and the Siegel--Veech Constants

    Get PDF
    A holomorphic 1-form on a compact Riemann surface S naturally defines a flat metric on S with cone-type singularities. We present the following surprising phenomenon: having found a geodesic segment (saddle connection) joining a pair of conical points one can find with a nonzero probability another saddle connection on S having the same direction and the same length as the initial one. The similar phenomenon is valid for the families of parallel closed geodesics. We give a complete description of all possible configurations of parallel saddle connections (and of families of parallel closed geodesics) which might be found on a generic flat surface S. We count the number of saddle connections of length less than L on a generic flat surface S; we also count the number of admissible configurations of pairs (triples,...) of saddle connections; we count the analogous numbers of configurations of families of closed geodesics. By the previous result of A.Eskin and H.Masur these numbers have quadratic asymptotics with respect to L. Here we explicitly compute the constant in this quqadratic asymptotics for a configuration of every type. The constant is found from a Siegel--Veech formula. To perform this computation we elaborate the detailed description of the principal part of the boundary of the moduli space of holomorphic 1-forms and we find the numerical value of the normalized volume of the tubular neighborhood of the boundary. We use this for evaluation of integrals over the moduli space.Comment: Corrected typos, modified some proofs and pictures; added a journal referenc

    Large scale rank of Teichmuller space

    Full text link
    Let X be quasi-isometric to either the mapping class group equipped with the word metric, or to Teichmuller space equipped with either the Teichmuller metric or the Weil-Petersson metric. We introduce a unified approach to study the coarse geometry of these spaces. We show that the quasi-Lipschitz image in X of a box in R^n is locally near a standard model of a flat in X. As a consequence, we show that, for all these spaces, the geometric rank and the topological rank are equal. The methods are axiomatic and apply to a larger class of metric spaces.Comment: Some corrections have been made. Also, the coarse differentiation statement has been modified to state that a quasi-Lipschitz map is "differentiable almost everywhere
    • …
    corecore